How to find the right wick for your candles

Select a wick from the online wick selection system, www.wedowick.com (or app)

Burn testing:

Insert the wick in the candle to be tested, ensuring that it remains vertical and in position throughout the production process - if filling, during pouring as well as cooling.

Test in burn cycles according to RAL GZ 041.

1. Candle weight up to 40 g
2. Candle weight above 40 g , Continuous burning to a residual height
maximum diameter 30 mm
3. Candle with diameter 31 mm -
60mm approx. 20 mm from the candle base
4. Candle with diameter above
60 mm

Chemical treatment of the wick - purpose:
stabilize the wick (crystal - skeleton)
regulate burning and obtain an even self-trimming effect
reduce afterglow \& smoking after extinguishing the flame
protect the wick against acids (e.g stearic acid and materials containing colours and fragrances) improve burning performance, reduce carbon deposit formation

How to know which wick sizes to test across different series is a frequent question. Wicks suggested by the Wedo Wick Configurator are a good starting point, but you may also wish to test further wicks from other series, which are also designed to burn in the same candle material and diameter. You may also just wish to experiment. Our recommendation is to use the "yield" figure as a selection tool. Given in m / kg, the yield is the best indication of comparable wick size. Examples in the table below are from some of the Wedo wick series - suitable for use in paraffin wax. In this example, we are looking for wicks with the nearest equivalent size to LX 14 P18.

LX 14 P18	m/kg		m/kg		m/kg		m/kg
		HzL 24 P6	1.310	TG 10 P2	1.480	PGS 4 P2	1.030
		HZL 28 P6	1.070	TG 12 P2	1.260	PGS 6 P2	880
	1.070	HzL 30 P6	1.000	TG 14 P2	990	PGS 8 P2	660
		HzL 34 P6	860	TG 16 P2	930	PGS 10 P2	540
		HzL 36 P6	870	TG 17 P2	870	PGGS 12 P2	500

Due to their construction, wicks always have a tendency to curve in a certain direction. They must curve, in order that the tip of the wick can position itself in the outer, hottest and most oxygen rich part of the flame and thereby self-trim correctly (see Result - A perfect flame). To enable the wick to assume the correct stance, it must be postioned centrally and vertically in the container / candle. If not, the wick can be forced into a position either against the natural direction of curve, in which case carbon deposits can form, or too far in the direction of curve, which can cause the wick to bend to such an extent, that it may possibly even dip back into the wax pool.

As famous and popular as the various editions of this "Wedo Burn Test Poster" have become, they cannot cover all aspects of wick selection and burn testing. If you have any questions about this wide-ranging subject, please do not hesitate to contact us - details below.

